Currently, my research focuses on formulating a mathematical model using a partial differential equation to predict the growth of solid malignant tumours. As I am learning AI and ML, I aim to design an ML pipeline to integrate growing tumour imaging data (such as Magnetic resonance imaging (MRI) scan, Computed tomography (CT) scan, and Mammography, etc) with the mathematical model.
Consider a scenario where we aim to predict the growth of a solid tumour, such as a brain tumour, breast cancer, liver cancer, etc. To achieve this, we will start by collecting MRI data, including multiple tumour size measurements taken over time. Then, we will create a partial differential equation (PDE) using the provided clinical data, typically a form of reaction-diffusion equation. This equation will encompass parameters like cell proliferation rate, diffusion coefficients, and nutrient availability. Subsequently, we will develop a machine-learning pipeline to combine the MRI data with the mathematical model. Integrating AI, ML, and mathematical modelling based on PDEs presents a robust approach to forecasting cancer growth and enhancing the treatment. By harnessing expertise from multiple fields, such as mathematics, computer science, and oncology, this methodology has significant potential to advance precision medicine in cancer care.